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Motivation - Conversational Recommender Systems

Traditional recommender systems:
@ sample inefficient

@ cold-start problem
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Motivation - Conversational Recommender Systems

Traditional recommender systems:
@ sample inefficient
@ cold-start problem
Conversational recommender systems:
@ more sample efficient

@ mitigate the cold-start problem
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Motivation - Limitations of existing CRSs

@ Conversational key-terms need to be carefully labeled by humans
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Motivation - Limitations of existing CRSs

@ Conversational key-terms need to be carefully labeled by humans
@ Granularity of the key-terms labeled by humans is usually fixed
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Figure 1. (a) Key-terms with fixed granularity labled by humans (in red box)!. (b)
Finer granularity of key-terms is usually needed in CRSs?.

Star Wars: Episode IX - The Rise of Skywalker (https://www.imdb.com)
*https://wordcloudapi . com
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Problem Formulation

@ N users and M items
@ ltem i's feature vector: x; € RY
o Key-term k's feature vector: X, € RY
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Problem Formulation

@ N users and M items
@ ltem i's feature vector: x; € RY
o Key-term k's feature vector: X, € RY

e 0, € RY and 6, € RY are user preference vectors on items and key-
terms respectively

@ Receive rewards r;, ; = le;t + € and 7, = HNUth(kt + € after rec-
ommending item J; and conducting one conversation on key-term ki

respectively
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Problem Formulation

@ N users and M items
@ ltem i's feature vector: x; € RY
o Key-term k's feature vector: X, € RY

e 0, € RY and 6, € RY are user preference vectors on items and key-

terms respectively

@ Receive rewards r;, ; = HuTtXit + € and 7, = Hlikt + €; after rec-
ommending item J; and conducting one conversation on key-term ki

respectively

@ The conversation frequency: g(t)?

WZYLL CtoF-ConUCB+ September 26, 2021 4/19



Problem Formulation

Learning objective: minimizing the expected cumulative regret?

ZQut Xy, — x,t] .
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Problem Formulation

Learning objective: minimizing the expected cumulative regret?

E eut ur X’t

Challenges:
@ No key-terms labeled by humans?
» Cluster the items to generate meaningful key-terms!
@ How to better elicit user preferences in conversations?
» Conduct conversations in a coarse-to-fine grained manner!
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Figure 2. The model proposed by us.
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Algorithm - Conversational Key-term Generation

No key-terms labeled by humans?

@ Adopt k-means method to cluster the feature vectors of items to gen-

erate the feature vectors of key-terms
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Algorithm - Conversational Key-term Generation

No key-terms labeled by humans?

@ Adopt k-means method to cluster the feature vectors of items to gen-

erate the feature vectors of key-terms

o Clustering number:

k(t) = min QM'OgI(Olgz;ft/ T)J +1, M> .
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Algorithm - Conversational Key-term Generation

No key-terms labeled by humans?

@ Adopt k-means method to cluster the feature vectors of items to gen-

erate the feature vectors of key-terms

o Clustering number:

k(t) = min QM'OgI(Olgz;ft/ T)J +1, M> .

@ Entity names of key-terms are obtained by using a mapping constructed

via a fine-tuned BERT and a three-layer MLP
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Algorithm - Conduct Conversations on User Clusters

How to better elicit user preferences in conversations?

@ Estimate user preference on key-terms:

. 2 .
g — : ( Te _ ~) 2
y = argmin g 0' X —Fc) + A|0]5
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Algorithm - Conduct Conversations on User Clusters

How to better elicit user preferences in conversations?

@ Estimate user preference on key-terms:

. 2 .
g — : ( Te _ ~) 2
y = argmin g 0' X —Fc) + A|0]5

o Estimate user preference on items:3

-
u 2 ~

0 = in A (GT _ ) 1 \)6—7 2.

u = argmin ; Xk —re) +( )l ull2
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Algorithm - Conduct Conversations on User Clusters

How to better elicit user preferences in conversations?

@ Estimate user preference on key-terms:

~ 2 .
g — . ( Te ~) 2
u argmelnz 0' X — ) + A0

o Estimate user preference on items:3

-
u 2 ~

0 = in A (GT _ ) 1 \)6—7 2.

u = argmin ; Xk —re) +( )l ull2

o Cluster the users based on ¢/,
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Algorithm - Conduct Conversations on User Clusters

e Closed-form solutions of (', and ¢/:

' =5 by, 0, =S (b, + (1-N),),

where
u Ty
b= 1=+ Azxkx[, by /\Zxkrk,
k=1 k=1
7, 7,
Su=M+> &, by=> %k
k=1 k=1
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Algorithm - Conduct Conversations on User Clusters

Interact with user clusters:

@ Recommend to user cluster p using UCB-based strategy®

it = arg T‘axx,-tTHf + Aa|xi[[(spy-1 + (1 — )\)o"zH(Sp)*lx,-tH(gp)_l .
e
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Algorithm - Conduct Conversations on User Clusters

Interact with user clusters:

@ Recommend to user cluster p using UCB-based strategy®
iy = arg T‘axxTﬁp + Aa|xi[[(spy-1 + (1 — )\)o"zH(Sp)*lx,-tH(gp)_l .
i€

@ Conduct conversations to user cluster p to faster reduce the uncertainty
coming key-terms

X(srP)-1 ) —1g 92
= s g XSS
kek 1+ [|%]1?

(57)-
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Analysis

Theorem

Under mild assumptions, let 3 = v/A\y/dlog T + (1 —v/A)y/d + log T) and
m be the number of the underlying user clusters, then the cumulative regret
of the algorithm CtoF-ConUCB+ after T rounds satistfies

TKZMWH?(( 2>\3>|ogT>.

The improvements come from the clustering of bandits® and the conversa-
tions conducted on user clusters.®

v
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Synthetic Datasets
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Figure 3. Results on synthetic datasets with varying levels of item similarities in
(a) (b), and user similarities in (c) (d).

Observations:
o Key-term generator works

@ Conversations conducted on user clusters could further improve the
performance
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Real Datasets
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Figure 4. Results on LastFM and MovielLens 25M datasets.

Observations:

o CtoF-ConUCB+ still clearly outperforms ConUCB .in real datasets
CtoF-ConUCB+ mr—r




Real Datasets
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Figure 5. The effects of missing key-terms in ConUCB.

Observations:

@ The performance of ConUCB starts to degrade when more than 30%
key-terms are removed
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Use Case
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Figure 6. Three use case examples from the logged results.

Our algorithm learns to generate meaningful coarse-to-fine grained conver-
sational key-terms.
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Conclusions

In this work:

@ Automatic generation of conversational key-terms by item clustering

and semantic mapping

o Elicit user preferences in a coarse-to-fine grained manner by conducting

conversations on user clusters
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o Q&A?

@ Thank you!
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