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Motivation - Conversational Recommender Systems

Traditional recommender systems:

sample inefficient

cold-start problem

Conversational recommender systems:

more sample efficient

mitigate the cold-start problem
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Motivation - Limitations of existing CRSs

Conversational key-terms need to be carefully labeled by humans

Granularity of the key-terms labeled by humans is usually fixed

Figure 1. (a) Key-terms with fixed granularity labled by humans (in red box)1. (b)
Finer granularity of key-terms is usually needed in CRSs2.

1Star Wars: Episode IX - The Rise of Skywalker (https://www.imdb.com)
2https://wordcloudapi.com
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Problem Formulation

N users and M items

Item i ’s feature vector: xi ∈ Rd

Key-term k’s feature vector: x̃k ∈ Rd

θu ∈ Rd and θ̃u ∈ Rd are user preference vectors on items and key-

terms respectively

Receive rewards rit ,t = θ>utxit + εt and r̃kt ,t = θ̃>ut x̃kt + ε̃t after rec-

ommending item it and conducting one conversation on key-term kt

respectively

The conversation frequency: g(t)1

WZYLL CtoF-ConUCB+ September 26, 2021 4 / 19



4/19

Problem Formulation

N users and M items

Item i ’s feature vector: xi ∈ Rd

Key-term k’s feature vector: x̃k ∈ Rd

θu ∈ Rd and θ̃u ∈ Rd are user preference vectors on items and key-

terms respectively

Receive rewards rit ,t = θ>utxit + εt and r̃kt ,t = θ̃>ut x̃kt + ε̃t after rec-

ommending item it and conducting one conversation on key-term kt

respectively

The conversation frequency: g(t)1

WZYLL CtoF-ConUCB+ September 26, 2021 4 / 19



4/19

Problem Formulation

N users and M items

Item i ’s feature vector: xi ∈ Rd

Key-term k’s feature vector: x̃k ∈ Rd

θu ∈ Rd and θ̃u ∈ Rd are user preference vectors on items and key-

terms respectively

Receive rewards rit ,t = θ>utxit + εt and r̃kt ,t = θ̃>ut x̃kt + ε̃t after rec-

ommending item it and conducting one conversation on key-term kt

respectively

The conversation frequency: g(t)1

WZYLL CtoF-ConUCB+ September 26, 2021 4 / 19



5/19

Problem Formulation

Learning objective: minimizing the expected cumulative regret2

R(T ) = E

[
T∑
t=1

θ>utx
∗
ut − θ

>
utxit

]
.

Challenges:

No key-terms labeled by humans?
I Cluster the items to generate meaningful key-terms!

How to better elicit user preferences in conversations?
I Conduct conversations in a coarse-to-fine grained manner!

WZYLL CtoF-ConUCB+ September 26, 2021 5 / 19



5/19

Problem Formulation

Learning objective: minimizing the expected cumulative regret2

R(T ) = E

[
T∑
t=1

θ>utx
∗
ut − θ

>
utxit

]
.

Challenges:

No key-terms labeled by humans?
I Cluster the items to generate meaningful key-terms!

How to better elicit user preferences in conversations?
I Conduct conversations in a coarse-to-fine grained manner!

WZYLL CtoF-ConUCB+ September 26, 2021 5 / 19



6/19

Model
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Figure 2. The model proposed by us.
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Algorithm - Conversational Key-term Generation

No key-terms labeled by humans?

Adopt k-means method to cluster the feature vectors of items to gen-

erate the feature vectors of key-terms

Clustering number:

k(t) = min

(⌊
M log(1 + δt/T )

log(2)

⌋
+ 1,M

)
.

Entity names of key-terms are obtained by using a mapping constructed

via a fine-tuned BERT and a three-layer MLP
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Algorithm - Conduct Conversations on User Clusters

How to better elicit user preferences in conversations?

Estimate user preference on key-terms:

θ̃′u = arg min
θ

T̃u∑
k=1

(
θ>x̃k − r̃k

)2
+ λ̃‖θ‖22 .

Estimate user preference on items:3

θ′u = arg min
θ

λ

Tu∑
k=1

(
θ>xk − rk

)2
+ (1− λ)‖θ − θ̃′u‖22 .

Cluster the users based on θ′u
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Algorithm - Conduct Conversations on User Clusters

Closed-form solutions of θ̃′u and θ′u:

θ̃′u = S̃−1u b̃u, θ
′
u = S−1u (bu + (1− λ)θ̃′u) ,

where

Su = (1− λ)I + λ

Tu∑
k=1

xkx
>
k , bu = λ

Tu∑
k=1

xk rk ,

S̃u = λ̃I +
T̃u∑
k=1

x̃k x̃
>
k , b̃u =

T̃u∑
k=1

x̃k r̃k .
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Algorithm - Conduct Conversations on User Clusters

Interact with user clusters:

Recommend to user cluster p using UCB-based strategy4

it = arg max
i∈A

x>it θ
p′

t + λα‖xit‖(Sp)−1 + (1− λ)α̃‖(Sp)−1xit‖(S̃p)−1 .

Conduct conversations to user cluster p to faster reduce the uncertainty
coming key-terms

kt = arg max
k∈K

‖X (Sp)−1(S̃p)−1x̃k‖22
1 + ‖x̃k‖2(S̃p)−1

.
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Analysis

Theorem

Under mild assumptions, let β =
√
λ
√
d logT + (1−

√
λ)
√
d + logT ) and

m be the number of the underlying user clusters, then the cumulative regret
of the algorithm CtoF-ConUCB+ after T rounds satisfies

R(T ) ≤
m∑
j=1

4β
√
dpjT log(T/d) +O

((
1

p
+

1

pγ2λ3x

)
logT

)
.

The improvements come from the clustering of bandits5 and the conversa-
tions conducted on user clusters.6
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Synthetic Datasets
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(a) (b) (c) (d)

Figure 3. Results on synthetic datasets with varying levels of item similarities in
(a) (b), and user similarities in (c) (d).

Observations:

Key-term generator works

Conversations conducted on user clusters could further improve the
performance
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Real Datasets
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Figure 4. Results on LastFM and MovieLens 25M datasets.

Observations:

CtoF-ConUCB+ still clearly outperforms ConUCB in real datasets
WZYLL CtoF-ConUCB+ September 26, 2021 13 / 19



14/19

Real Datasets
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Figure 5. The effects of missing key-terms in ConUCB.

Observations:

The performance of ConUCB starts to degrade when more than 30%
key-terms are removed
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Use Case

Round 9

Round 5

Round 6

Round 8

Round 9

Round 8

Round 10

Round 12

Round 13

Round 4

Round 7

Round 8

Do you like 
historical movies?

Yes, I do.

How about movies 
of adolescence?

I like this genre.

Do you like 
inspirational movies?

Yes, I like this kind.

Do you like Wonder 
Boys (2000)?

I like this movie.

Do you like disaster 
movies?

Yes.

How about movies 
of biochemistry?

Yes, this is what I like.

Movies about 
Jurrasic?

I like supernatural.

Do you like Lost World: 
Jurassic Park, The (1997)?
I like this movie.

Do you like 
dramatic movies?

Yes, I do.

How about movies 
of boxing?

Yes, I like it.

Movies about 
sports?

Yes, I like that.

Do you like Ali (2001)?

I like this movie.

Figure 6. Three use case examples from the logged results.

Our algorithm learns to generate meaningful coarse-to-fine grained conver-
sational key-terms.
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Conclusions

In this work:

Automatic generation of conversational key-terms by item clustering

and semantic mapping

Elicit user preferences in a coarse-to-fine grained manner by conducting

conversations on user clusters
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The End

Q&A?

Thank you!
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